[16.16.16](1,3,5)Cyclophanetetracosayne (C₆₀H₆): A Precursor to C₆₀ Fullerene

Yoshito Tobe,*,† Nobuko Nakagawa,† Koichiro Naemura,† Tomonari Wakabayashi,[‡] Tadamasa Shida,[‡] and Yohji Achiba[§]

> Department of Chemistry Faculty of Engineering Science Osaka University, Toyonaka, Osaka 560, Japan Division of Chemistry, Graduate School of Science Kyoto University, Kyoto 606-01, Japan Department of Chemistry Tokyo Metropolitan University Hachioji, Tokyo 192-03, Japan

> > Received January 29, 1998

Although C₆₀ and some higher fullerenes are now readily available from commercial sources, it is still important to synthesize fullerenes on the basis of organochemical transformations because it would be possible to manipulate carbon cages in a size-selective and structure-defined manner. It would also be possible to encapsulate transition metals into the cage leading to the yet-discovered endohedral transition metallofullerenes,¹ which are of tremendous interest as new materials. The first attempt to the total synthesis of isosahedral C₆₀ was set up by Chapman's school² well before its first observation,³ which was followed by several approaches.⁴ However, despite the numerous efforts, the controlled chemical synthesis of fullerenes as well as that of endohedral metallofullerenes have not been achieved yet.

Recently, Rubin et al. proposed a new route to fullerene synthesis⁵ inspired by a postulated mechanism of the fullerene formation, which includes intermolecular cycloaddition of cyclic polyynes (coalescence) followed by skeletal isomerization (annealing).⁶ Thus, cage polyyne $C_{60}H_6$ (1) was proposed as a possible precursor to C_{60} fullerene, because it would cascade down to the most stable icosahedral structure of I_h symmetry⁷ together with the loss of hydrogen, just like the similar cascade known as "adamantane rearrangement."⁸ As an initial step to the synthesis of $C_{60}H_6$, they prepared $C_{60}H_{18}$ (2), in which two double bonds still remained in each of the polyyne bridge. In the ion cyclotron resonance mass spectrum (negative mode) of 2, dehydrogenation down to C₆₀H₁₄⁻ was observed,^{5a} suggesting the possibility of complete dehydrogenation of $C_{60}H_6$ (2) to C_{60} . As an extension

[†] Osaka University.

[‡] Kvoto University

§ Tokyo Metropolitan University.

(1) For reviews, see: (a) Bethune, D. S.; Johnson, R. D.; Salem, J. R.; de Vries, M. S.; Yannoni, C. S. *Nature (London)* **1993**, *366*, 123–128. (b) Edelmann, F. T. *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 981–985.

(2) Ph.D. dissertations at UCLA: Jacobsen, R. H. 1986; Xiong, Y. 1987; Loguercio, D., Jr. 1988; Shen, D. 1990. Cited in Diederich, F.; Whetten, R. L. Acc. Chem. Res. 1992, 25, 119-126.

(3) Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature (London) 1985, 318, 162-163.

124 - 125.

(6) (a) von Helden, G.; Gotts, N. G.; Bowers, M. T. *Nature (London)* **1993**, 363, 60–63. (b) Hunter, J. M.; Fye, J. L.; Roskamp, E. J.; Jarrold, M. F. J. *Phys. Chem.* **1994**, *98*, 1810–1818. (c) McElvany, S. W.; Ross, M. M.; Goroff, M. S.; Diederich, F. Science 1993, 259, 1594–1596. (d) Strout, D. L.; Scuseria, G. E. J. Phys. Chem. 1996, 100, 6492–6498. (e) For a review, see: Goroff, N. S. Acc. Chem. Res. 1996, 29, 77-83.

(7) Recently, a theoretical examination of a cascade isomerization mechanism, "fullerene rearrangement," from various C_{60} isomers to $I_h C_{60}$ was undertaken: Ōsawa, E.; Ueno, H.; Yoshida, M.; Nishiyama, M. J. Chem. Soc., Perkin Trans. 2 Submitted for publication.

(8) Schleyer, P. v. R. In Cage Hydrocarbons; Olah, G. A., Ed.; Wiley-Interscience: New York, 1990; pp 1-38.

of our strategy to generate reactive polyynes by [2 + 2]cycloreversion of [4.3.2]propellatriene derivatives,9 we disclose here the preparation of a stable precursor **3** $[C_{60}H_6(Ind)_6]$ which would form $C_{60}H_6$ by extrusion of six aromatic fragments (indane = Ind) and the observation of C_{60} as well as $C_{60}H_6$ ions in the laser desorption mass spectra.10

According to the semiempirical calculations on the AM1 level, the title compound **1** has a heat of formation about 500 kcal/mol larger than that of the known hexahydrofullerene.¹¹ Moreover, since diaryl-substituted hexadecaoctaynes have been shown to be the isolation limit of the linear polyynes,¹³ cage polyyne **1** must be too reactive for isolation at room temperature. It is also interesting to note that 1 is a member of polyyne-bridged cyclophanes, a new family of strained cyclophanes, proposed recently.14

To prepare unsymmetrically substituted diakynylpropellatriene, the protective group of the known monoalkynylated propellatriene $4a^{9b}$ was switched to the more readily removable Si(*i*-Pr)₃ group to give 4b. Introduction of the second alkynyl group followed by selective deprotection of the SiMe₃ group of **5a** afforded diyne **5b**. Pd-catalyzed hetero coupling¹⁵ of **5b** with tris(bromoethynyl)benzene $(6)^{5a}$ afforded trispropellane **7a** in 67% yield. After

(9) (a) Tobe, Y.; Fujii, T., Matsumoto, H.; Naemura, K.; Achiba, Y.; Wakabayashi, T. J. Am. Chem. Soc. **1996**, 118, 2758–2759. (b) Tobe, Y.; Matsumoto, H.; Naemura, K.; Achiba, Y.; Wakabayashi, T. Angew. Chem., Int. Ed. Engl. **1996**, 35, 1800–1802. (c) Wakabayashi, T.; Kohno, M.; Achiba, Y.; Shiromaru, H.; Momose, T.; Shida, T.; Naemura, K.; Tobe, Y. J. Chem. Phys. 1997, 107, 4783-4687.

(10) Recently, we became aware that Rubin et al. synthesized a precursor to 1 annelated by cyclobutenedione units and observed $C_{60}H_6^-$ and C_{60}^- in the negative mode ion cyclotron resonance mass spectrum: Rubin, Y.; Parker, T. C.; Pastor, S.; Jalisatgi, S.; Boulle, C.; Wilkins, C. L. Angew. Chem. In press

(11) The AM1-calculated $\Delta H_{\rm f}^{\circ}$ values for 2, 1,2,33,41,42,50-hexahydrofullerene,^{11a} and 1,2,5,10,21,24-hexahydrofullerene^{11b} are 1341.5, 847.6, and 840.3 kcal/mol, respectively. Calculations were performed by SPARTAN version 5.0; Wavefunction Inc. For ab initio calculations of $C_{60}H_6$ isomers, see: Cahill, P. A. *Chem. Phys. Lett.* **1996**, 254, 257–262.

(12) (a) Meier, M. S.; Weedon, B. R.; Spielmann, H. P. J. Am. Chem. Soc. 1996, 118, 11682-11683. (b) Known as hexahalo derivatives: Birkett, P. (London) **1992**, 357, 479–481. Birkett, P. R.; Avent, A. G.; Darwish, A. D.; Kroto, H. W.; Taylor, R.; Walton, D. R. M. J. Chem. Soc., Chem. Commun. 1993, 1230-1232.

(13) (a) Armitage, J. B.; Entwistle, N.; Jones, E. R. H.; Whiting, M. C. J. Chem. Soc. 1954, 147-154. (b) Johnson, T. R.; Walton, D. R. M. Tetrahedron **1972**. 28. 5221-5236.

(14) Haley, M. M.; Langsdorf, B. L. Chem. Commun. 1997, 1121-1122. (15) Cai, C.; Vasella, A. Helv. Chim. Acta 1995, 78, 2053-2064.

Scheme 1^a

^{*a*} Key: (a) (i) KOH, benzene, reflux, 72%; (ii) BuLi, THF, 0 °C; (iii) CF₃SO₃Si(*i*-Pr)₃, rt, 99%; (b) (CH₃)₃SiCCH, Pd(PPh₃)₄, CuI, Et₃N, THF, rt, 78%; (c) K₂CO₃, MeOH–THF, rt, 96%; (d) Pd₂(dba)₃·CHCl₃, CuI, 1,2,2,6,6-pentamethylpiperidine, benzene, rt, 67%; (e) (i) Bu₄N⁺F⁻, THF, rt, (ii) Cu(OAc)₂, pyridine, rt, 70%. Only one of the diastereomers (C_3) is shown for compounds **7a,b**.

removal of the Si(*i*-Pr)₃ group, oxidative coupling of **7b** under high dilution conditions furnished **3** as a mixture of diastereomers¹⁶ in 70% yield (Scheme 1).

Figure 1a shows the positive mode laser desorption mass spectrum of **3**. While a prominent peak of C_{60}^+ is observed, neither the parent peak (m/z 1434) nor $C_{60}H_6^+$ (m/z 726) can be detected. It has been well-documented that, in general, carbon cluster cations generated by the laser desorption method are thermally highly excited, and, as a result, fragmentation due to C_2 loss is frequently observed.¹⁷ The internal temperature of thermally excited C_{60}^+ was estimated to be as high as 2300–3000 K.¹⁸ Since such C_2 loss down to C_{50}^+ was indeed observed in the present case, it is difficult to deduce the structure of C_{60} cation. However, it should be pointed out that this represents one of few examples of size-selective formation of C_{60} cluster,^{6c,e} because no larger cluster such as C_{70} was observed.

The negative mode mass spectra of **3** are shown in Figure 1b. In contrast to the positive mode, the negative mode spectra exhibited peaks due to $C_{60}H_6^-$ and $(C_{60}H_6^+ + indane)^-$ at m/z 726 and 844, respectively, though the parent peak was not detected. It has been documented that the internal temperature of negative ions is much lower than those of positive ions and negative ions represent better the structures and populations of neutral species.¹⁹ Consequently, it is reasonable to assume that the polycyclic cage structure of **1** remains intact in the $C_{60}H_6$ anion observed.

Figure 1b also shows a small peak due to C_{60} anion was observed. Judging from the isotope distribution of the C_{60}^{-} , there are no intermediate species between $C_{60}H_6^{-}$ and C_{60}^{-} such as

Figure 1. Laser desorption time-of-flight mass spectra of **3** (a) in positive mode and (b) in negative mode. Liquid paraffin was used as a matrix and the third harmonic of a Nd:YAG laser (355 nm, typically 3 MW/ cm^2 with a 7 ns duration) was employed for simultaneous desorption and ionization.

 $C_{60}H_5^-$, $C_{60}H_4^-$, and so on. This means that the dehydrogenation probably takes place simultaneously to the drastic skeletal isomerization, leading to the formation of a fullerene-like structure. Though we are not able to figure out a rational pathway for such transformation at this moment, the large potential energy of 1 must be responsible for such cascade transformation.

In summary, we prepared a stable precursor to cage polyyne $C_{60}H_6$ (1) and succeeded in the observation of size-selective formation of C_{60}^+ and that of $C_{60}H_6^-$ as well. Although there still remains a lot to be done,²⁰ we believe the present work marks a step forward toward total synthesis of fullerenes.

Acknowledgment. This work was supported by Grants-in-Aid from the Ministry of Education, Science, Sports and Culture of Japan. We are grateful to Professor Yves Rubin (UCLA) for informing us with his results prior to publication. Y.T. thanks to Shin-Etsu Chemicals Co. for a generous gift of organosilicon reagents.

Supporting Information Available: Experimental procedures and spectral data for **3**, **4a**, **5a**,**b**, and **7a**,**b** (8 pages, print/PDF). See any current masthead page for ordering information and Web access instructions.

JA9803308

⁽¹⁶⁾ Eight diastereomers including **3** depicted (C_{3h}) are conceivable, none of which was separated.

^{(17) (}a) Wurz, P.; Lykke, K. R. J. Phys. Chem. 1992, 96, 10129–10139.
(b) Christian, J. F.; Wan, Z.; Anderson, S. L. J. Phys. Chem. 1992, 96, 3574–3576.
(c) Wakabayashi, T.; Shiromaru, H.; Suzuki, S.; Kikuchi, K.; Achiba, Y. Surf. Rev. Lett. 1996, 3, 793–798.

⁽¹⁸⁾ Mitzner, R.; Campbell, E. E. B. J. Chem. Phys. 1995, 103, 2445-2453.

⁽¹⁹⁾ Kaizu, K.; Kohno, M.; Suzuki, S.; Shiromaru, H.; Moriwaki, T.; Achiba, Y. J. Chem. Phys. **1997**, 106, 9954–9956.

⁽²⁰⁾ Photolysis of **3** in benzene solution with a low-pressure mercury lamp resulted in the formation of indan (ca. 50% yield by ¹H NMR spectrum) and uncharacterized polymeric materials. So far we are not able to perform flash vacuum pyrolysis of **3** owing to its low volatility. Further work in the preparative scale fragmentation of **3** is under way.